Redis 缓存淘汰策略
(1) 缓存淘汰是什么
(2) 为什么要缓存淘汰
(3) 缓存淘汰算法/页面置换算法原理
(3.1) LRU
LRU 算法背后的想法非常朴素:它认为刚刚被访问的数据,肯定还会被再次访问。
选择最近最久未被使用的数据进行淘汰。
优点:
不足:
可能造成缓存污染。
缓存污染
:在一些场景下,有些数据被访问的次数非常少,甚至只会被访问一次。当这些数据服务完访问请求后,如果还继续留存在缓存中的话,就只会白白占用缓存空间。
典型场景:全表扫描,对所有数据进行一次读取,每个数据都被读取到了,
(3.2) LFU
记录数据被访问的频率,选择在最近使用最少的数据进行淘汰。
LFU算法是根据数据访问的频率来选择被淘汰数据的,所以LFU算法会记录每个数据的访问次数。当一个数据被再次访问时,就会增加该数据的访问次数。
不过,访问次数和访问频率还不能完全等同。访问频率是指在一定时间内的访问次数,也就是说,在计算访问频率时,我们不仅需要记录访问次数,还要记录这些访问是在多长时间内执行的。
(4) Redis里缓存有哪些淘汰策略
内存淘汰策略 | 解释 | 备注 |
---|---|---|
noeviction | 不进行数据淘汰 | |
allkeys-random | 在所有key里随机筛选数据 | |
allkeys-lru | 在所有key里筛选最近最久未使用的数据 | |
allkeys-lfu | 在所有key里筛选最近最少使用的数据 | Redis 4.0 新增 |
volatile-ttl | 在有过期时间key里根据过期时间的先后筛选 | |
volatile-random | 在有过期时间key里随机筛选数据 | |
volatile-lru | 在有过期时间key里筛选最近最久未使用的数据 | |
volatile-lfu | 在有过期时间key里筛选最近最少使用的数据 | Redis 4.0 新增 |
lru (Least Recently Used) 最近最久未使用
lfu (Least Frequently Used) 最近最少使用
在redis3.0之前,默认淘汰策略是volatile-lru
;在redis3.0及之后(包括3.0),默认淘汰策略是noeviction
。
在3.0及之后的版本,Redis 在使用的内存空间超过 maxmemory 值时,并不会淘汰数据。
对应到 Redis 缓存,也就是指,一旦缓存被写满了,再有写请求来时,Redis 不再提供服务,而是直接返回错误。
(4.1) Redis内存淘汰机制如何启用
Redis 的内存淘汰机制是如何启用近似 LRU 算法的
和Redis配置文件redis.conf
中的两个配置参数有关:
maxmemory
,该配置项设定了 Redis server 可以使用的最大内存容量,一旦 server 使用的实际内存量超出该阈值时,server 就会根据 maxmemory-policy 配置项定义的策略,执行内存淘汰操作;
maxmemory-policy
,该配置项设定了 Redis server 的内存淘汰策略,主要包括近似 LRU 算法、LFU 算法、按 TTL 值淘汰和随机淘汰等几种算法。
(5) Redis里缓存淘汰算法原理
(5.1) Redis-LRU
LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。
而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 性能。
在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。
Redis 并没有为所有的数据维护一个全局的链表,而是通过随机采样方式,选取一定数量(例如 100 个)的数据放入候选集合,后续在候选集合中根据 lru 字段值的大小进行筛选。
(3.2) Redis-LFU
LFU 缓存策略是在 LRU 策略基础上,为每个数据增加了一个计数器,来统计这个数据的访问次数。
当使用 LFU 策略筛选淘汰数据时,首先会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出缓存。
如果两个数据的访问次数相同,LFU 策略再比较这两个数据的访问时效性,把距离上一次访问时间更久的数据淘汰出缓存。
Redis 在实现 LFU 策略的时候,只是把原来 24bit 大小的 lru 字段,又进一步拆分成了两部分。
ldt 值:lru 字段的前 16bit,表示数据的访问时间戳;
counter 值:lru 字段的后 8bit,表示数据的访问次数。
在实现 LFU 策略时,Redis 并没有采用数据每被访问一次,就给对应的 counter 值加 1 的计数规则,而是采用了一个更优化的计数规则。
LFU 策略实现的计数规则是:每当数据被访问一次时,首先,用计数器当前的值乘以配置项 lfu_log_factor 再加 1,再取其倒数,得到一个 p 值;然后,把这个 p 值和一个取值范围在(0,1)间的随机数 r 值比大小,只有 p 值大于 r 值时,计数器才加 1。
double r = (double)rand()/RAND_MAX;
...
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;
(4) LRU源码解读
(4.1) 全局LRU时钟值的计算
LRU算法需要知道数据的最近一次访问时间。因此,Redis设计了LRU时钟来记录数据每次访问的时间戳。
// file: src/server.h
/*
* redis对象
*/
typedef struct redisObject {
unsigned type:4; // 数据类型 (string/list/hash/set/zset等)
unsigned encoding:4; // 编码方式
unsigned lru:LRU_BITS; // LRU时间(相对于全局 lru_clock)
// 或 LFU数据(低8位保存频率 和 高16位保存访问时间)。
// LRU_BITS为24个bits
int refcount; // 引用计数 4字节
void *ptr; // 指针 指向对象的值 8字节
} robj;
// file: src/server.c
void initServerConfig(void) {
// 计算全局LRU时钟值
server.lruclock = getLRUClock();
}
// file: src/evict.c
/*
* 根据时钟分辨率返回 LRU 时钟。
* 这是一个减少位格式的时间,可用于设置和检查 redisObject 结构的 object->lru 字段。
*/
unsigned int getLRUClock(void) {
// mstime()是毫秒时间戳 // mstime()/1000=秒级时间戳
// 与运算 保证值 <= LRU_CLOCK_MAX
return (mstime()/LRU_CLOCK_RESOLUTION) & LRU_CLOCK_MAX;
}
从代码可以看出,LRU时钟精度是1000毫秒,也就是1秒。
#define LRU_BITS 24
// obj->lru的最大值 // LRU_CLOCK_MAX = 1^24 - 1
#define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) /* Max value of obj->lru */
// LRU 时钟分辨率(毫秒)
#define LRU_CLOCK_RESOLUTION 1000 /* LRU clock resolution in ms */
// file: src/server.c
/*
* 返回UNIX毫秒时间戳
* Return the UNIX time in milliseconds
*/
mstime_t mstime(void) {
return ustime()/1000;
}
// file: src/server.c
/*
* 返回UNIX微秒时间戳
* Return the UNIX time in microseconds
*/
long long ustime(void) {
struct timeval tv;
long long ust;
gettimeofday(&tv, NULL);
ust = ((long long)tv.tv_sec)*1000000;
ust += tv.tv_usec;
return ust;
}
(4.2) 在运行过程中LRU时钟值是如何更新的
和 Redis server 在事件驱动框架中,定期运行的时间事件所对应的 serverCron 函数有关。
serverCron 函数作为时间事件的回调函数,本身会按照一定的频率周期性执行,其频率值是由 Redis 配置文件 redis.conf 中的 hz 配置项决定的。
hz 配置项的默认值是 10,这表示 serverCron 函数会每 100 毫秒(1秒 / 10 = 100 毫秒)运行一次。
// file: src/server.c
/* This is our timer interrupt, called server.hz times per second.
* Here is where we do a number of things that need to be done asynchronously.
* For instance:
*
* - Active expired keys collection (it is also performed in a lazy way on
* lookup).
* - Software watchdog.
* - Update some statistic.
* - Incremental rehashing of the DBs hash tables.
* - Triggering BGSAVE / AOF rewrite, and handling of terminated children.
* - Clients timeout of different kinds.
* - Replication reconnection.
* - Many more...
*
* Everything directly called here will be called server.hz times per second,
* so in order to throttle execution of things we want to do less frequently
* a macro is used: run_with_period(milliseconds) { .... }
*/
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
/* We have just LRU_BITS bits per object for LRU information.
* So we use an (eventually wrapping) LRU clock.
*
* Note that even if the counter wraps it's not a big problem,
* everything will still work but some object will appear younger
* to Redis. However for this to happen a given object should never be
* touched for all the time needed to the counter to wrap, which is
* not likely.
*
* Note that you can change the resolution altering the
* LRU_CLOCK_RESOLUTION define. */
// 默认情况下,每100毫秒调用getLRUClock函数更新一次全局LRU时钟值
server.lruclock = getLRUClock();
}
这样一来,每个键值对就可以从全局 LRU 时钟获取最新的访问时间戳了。
(4.3) key-value-LRU时钟值的初始化与更新
(4.3.1) key-LRU时钟初始化
对于key-value来说,它的 LRU 时钟值最初是在这个键值对被创建的时候,进行初始化设置的,这个初始化操作是在 createObject 函数中调用的。
// file: src/object.c
/*
* 创建一个redisObject对象
*
* @param type redisObject的类型
* @param *ptr 值的指针
*/
robj *createObject(int type, void *ptr) {
// 为redisObject结构体分配内存空间
robj *o = zmalloc(sizeof(*o));
// 省略部分代码
// 将lru字段设置为当前的 lruclock(分钟分辨率),或者 LFU 计数器。
// 判断内存过期策略
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
// 对应lfu
// LFU_INIT_VAL=5 对应二进制是 0101
// 或运算
o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
} else {
// 对应lru
o->lru = LRU_CLOCK();
}
return o;
}
(4.3.2) key-LRU时钟更新
只要一个key被访问了,它的 LRU 时钟值就会被更新。而当一个键值对被访问时,访问操作最终都会调用 lookupKey
函数。
// file: src/db.c
/*
* 低级key查找API
* 实际上并没有直接从应该依赖lookupKeyRead()、lookupKeyWrite()和lookupKeyReadWithFlags()的命令实现中调用。
*/
robj *lookupKey(redisDb *db, robj *key, int flags) {
dictEntry *de = dictFind(db->dict,key->ptr);
// 如果节点存在
if (de) {
// 从节点里获取redisObject
robj *val = dictGetVal(de);
/*
* 更新老化算法的访问时间。
* 如果我们有一个正在保存的子进程,请不要这样做,因为这会触发疯狂写入副本。
*/
// 没有活跃子进程 并且
if (!hasActiveChildProcess() && !(flags & LOOKUP_NOTOUCH)){
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
// 更新lfu
updateLFU(val);
} else {
// 更新lru时间
val->lru = LRU_CLOCK();
}
}
return val;
} else {
return NULL;
}
}
(4.4) 近似LRU算法的实际执行
Redis 之所以实现近似 LRU 算法的目的,是为了减少内存资源和操作时间上的开销。
何时触发算法执行?
算法具体如何执行?
(4.4.1) 触发时机
近似 LRU 算法的主要逻辑是在 freeMemoryIfNeeded 函数中实现的
processCommand -> freeMemoryIfNeededAndSafe -> freeMemoryIfNeeded
(4.4.2) 近似LRU算法执行
主要分3大步
- 判断当前内存使用情况-getMaxmemoryState
- 更新待淘汰的候选键值对集合-evictionPoolPopulate
- 选择被淘汰的键值对并删除-freeMemoryIfNeeded
// file: src/evict.c
/* This function is periodically called to see if there is memory to free
* according to the current "maxmemory" settings. In case we are over the
* memory limit, the function will try to free some memory to return back
* under the limit.
*
* The function returns C_OK if we are under the memory limit or if we
* were over the limit, but the attempt to free memory was successful.
* Otherwise if we are over the memory limit, but not enough memory
* was freed to return back under the limit, the function returns C_ERR.
*/
int freeMemoryIfNeeded(void) {
int keys_freed = 0;
/* By default replicas should ignore maxmemory
* and just be masters exact copies. */
if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK;
size_t mem_reported, mem_tofree, mem_freed;
mstime_t latency, eviction_latency, lazyfree_latency;
long long delta;
int slaves = listLength(server.slaves);
int result = C_ERR;
/* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (clientsArePaused()) return C_OK;
// 如果当前内存使用量没有超过 maxmemory,返回
if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
return C_OK;
// 已经释放的内存大小
mem_freed = 0;
latencyStartMonitor(latency);
if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
goto cant_free; /* We need to free memory, but policy forbids. */
// 已经释放的内存大小 < 计划要释放的内存大小
while (mem_freed < mem_tofree) {
int j, k, i;
static unsigned int next_db = 0;
sds bestkey = NULL;
int bestdbid;
redisDb *db;
dict *dict;
dictEntry *de;
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
{
// 淘汰池 / 采样key集合
struct evictionPoolEntry *pool = EvictionPoolLRU;
while(bestkey == NULL) {
unsigned long total_keys = 0, keys;
// 在keys过期时我们不想创建本地数据库去选择(哪些key删除),
// 因此开始在每个数据库中填充采样key的淘汰池。
for (i = 0; i < server.dbnum; i++) {
db = server.db+i;
dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
db->dict : db->expires;
if ((keys = dictSize(dict)) != 0) {
evictionPoolPopulate(i, dict, db->dict, pool);
total_keys += keys;
}
}
if (!total_keys) break; /* No keys to evict. */
/* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {
if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid;
if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {
de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
}
/* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0;
/* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {
bestkey = dictGetKey(de);
break;
} else {
/* Ghost... Iterate again. */
}
}
}
}
/* volatile-random and allkeys-random policy */
else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
{
/* When evicting a random key, we try to evict a key for
* each DB, so we use the static 'next_db' variable to
* incrementally visit all DBs. */
for (i = 0; i < server.dbnum; i++) {
j = (++next_db) % server.dbnum;
db = server.db+j;
dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
db->dict : db->expires;
if (dictSize(dict) != 0) {
de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
bestdbid = j;
break;
}
}
}
/* Finally remove the selected key. */
if (bestkey) {
db = server.db+bestdbid;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
/* We compute the amount of memory freed by db*Delete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* Same for CSC invalidation messages generated by signalModifiedKey.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = (long long) zmalloc_used_memory();
latencyStartMonitor(eviction_latency);
if (server.lazyfree_lazy_eviction)
dbAsyncDelete(db,keyobj);
else
dbSyncDelete(db,keyobj);
latencyEndMonitor(eviction_latency);
latencyAddSampleIfNeeded("eviction-del",eviction_latency);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
signalModifiedKey(NULL,db,keyobj);
notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++;
/* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers();
/* Normally our stop condition is the ability to release
* a fixed, pre-computed amount of memory. However when we
* are deleting objects in another thread, it's better to
* check, from time to time, if we already reached our target
* memory, since the "mem_freed" amount is computed only
* across the dbAsyncDelete() call, while the thread can
* release the memory all the time. */
if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
/* Let's satisfy our stop condition. */
mem_freed = mem_tofree;
}
}
} else {
goto cant_free; /* nothing to free... */
}
}
result = C_OK;
cant_free:
/* We are here if we are not able to reclaim memory. There is only one
* last thing we can try: check if the lazyfree thread has jobs in queue
* and wait... */
if (result != C_OK) {
latencyStartMonitor(lazyfree_latency);
while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
result = C_OK;
break;
}
usleep(1000);
}
latencyEndMonitor(lazyfree_latency);
latencyAddSampleIfNeeded("eviction-lazyfree",lazyfree_latency);
}
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
return result;
}
(4.4.2.1) 判断当前内存使用情况-getMaxmemoryState
// file: src/evict.c
/* Get the memory status from the point of view of the maxmemory directive:
* if the memory used is under the maxmemory setting then C_OK is returned.
* Otherwise, if we are over the memory limit, the function returns
* C_ERR.
*
* The function may return additional info via reference, only if the
* pointers to the respective arguments is not NULL. Certain fields are
* populated only when C_ERR is returned:
*
* 'total' total amount of bytes used.
* (Populated both for C_ERR and C_OK)
*
* 'logical' the amount of memory used minus the slaves/AOF buffers.
* (Populated when C_ERR is returned)
*
* 'tofree' the amount of memory that should be released
* in order to return back into the memory limits.
* (Populated when C_ERR is returned)
*
* 'level' this usually ranges from 0 to 1, and reports the amount of
* memory currently used. May be > 1 if we are over the memory
* limit.
* (Populated both for C_ERR and C_OK)
*/
int getMaxmemoryState(size_t *total, size_t *logical, size_t *tofree, float *level) {
size_t mem_reported, mem_used, mem_tofree;
/* Check if we are over the memory usage limit. If we are not, no need
* to subtract the slaves output buffers. We can just return ASAP. */
mem_reported = zmalloc_used_memory();
if (total) *total = mem_reported;
/* We may return ASAP if there is no need to compute the level. */
int return_ok_asap = !server.maxmemory || mem_reported <= server.maxmemory;
if (return_ok_asap && !level) return C_OK;
/* Remove the size of slaves output buffers and AOF buffer from the
* count of used memory. */
mem_used = mem_reported;
size_t overhead = freeMemoryGetNotCountedMemory();
mem_used = (mem_used > overhead) ? mem_used-overhead : 0;
/* Compute the ratio of memory usage. */
if (level) {
if (!server.maxmemory) {
*level = 0;
} else {
*level = (float)mem_used / (float)server.maxmemory;
}
}
if (return_ok_asap) return C_OK;
/* Check if we are still over the memory limit. */
if (mem_used <= server.maxmemory) return C_OK;
/* Compute how much memory we need to free. */
mem_tofree = mem_used - server.maxmemory;
if (logical) *logical = mem_used;
if (tofree) *tofree = mem_tofree;
return C_ERR;
}
(4.4.2.2) 更新待淘汰的候选键值对集合-evictionPoolPopulate
// file: src/evict.c
/* This is an helper function for freeMemoryIfNeeded(), it is used in order
* to populate the evictionPool with a few entries every time we want to
* expire a key. Keys with idle time smaller than one of the current
* keys are added. Keys are always added if there are free entries.
*
* We insert keys on place in ascending order, so keys with the smaller
* idle time are on the left, and keys with the higher idle time on the
* right. */
void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
int j, k, count;
dictEntry *samples[server.maxmemory_samples];
count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
for (j = 0; j < count; j++) {
unsigned long long idle;
sds key;
robj *o;
dictEntry *de;
de = samples[j];
key = dictGetKey(de);
/* If the dictionary we are sampling from is not the main
* dictionary (but the expires one) we need to lookup the key
* again in the key dictionary to obtain the value object. */
if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {
if (sampledict != keydict) de = dictFind(keydict, key);
o = dictGetVal(de);
}
/* Calculate the idle time according to the policy. This is called
* idle just because the code initially handled LRU, but is in fact
* just a score where an higher score means better candidate. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {
idle = estimateObjectIdleTime(o);
} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
/* When we use an LRU policy, we sort the keys by idle time
* so that we expire keys starting from greater idle time.
* However when the policy is an LFU one, we have a frequency
* estimation, and we want to evict keys with lower frequency
* first. So inside the pool we put objects using the inverted
* frequency subtracting the actual frequency to the maximum
* frequency of 255. */
idle = 255-LFUDecrAndReturn(o);
} else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
/* In this case the sooner the expire the better. */
idle = ULLONG_MAX - (long)dictGetVal(de);
} else {
serverPanic("Unknown eviction policy in evictionPoolPopulate()");
}
/* Insert the element inside the pool.
* First, find the first empty bucket or the first populated
* bucket that has an idle time smaller than our idle time. */
k = 0;
while (k < EVPOOL_SIZE &&
pool[k].key &&
pool[k].idle < idle) k++;
if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
/* Can't insert if the element is < the worst element we have
* and there are no empty buckets. */
continue;
} else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
/* Inserting into empty position. No setup needed before insert. */
} else {
/* Inserting in the middle. Now k points to the first element
* greater than the element to insert. */
if (pool[EVPOOL_SIZE-1].key == NULL) {
/* Free space on the right? Insert at k shifting
* all the elements from k to end to the right. */
/* Save SDS before overwriting. */
sds cached = pool[EVPOOL_SIZE-1].cached;
memmove(pool+k+1,pool+k,
sizeof(pool[0])*(EVPOOL_SIZE-k-1));
pool[k].cached = cached;
} else {
/* No free space on right? Insert at k-1 */
k--;
/* Shift all elements on the left of k (included) to the
* left, so we discard the element with smaller idle time. */
sds cached = pool[0].cached; /* Save SDS before overwriting. */
if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
memmove(pool,pool+1,sizeof(pool[0])*k);
pool[k].cached = cached;
}
}
/* Try to reuse the cached SDS string allocated in the pool entry,
* because allocating and deallocating this object is costly
* (according to the profiler, not my fantasy. Remember:
* premature optimization bla bla bla. */
int klen = sdslen(key);
if (klen > EVPOOL_CACHED_SDS_SIZE) {
pool[k].key = sdsdup(key);
} else {
memcpy(pool[k].cached,key,klen+1);
sdssetlen(pool[k].cached,klen);
pool[k].key = pool[k].cached;
}
pool[k].idle = idle;
pool[k].dbid = dbid;
}
}
(4.4.2.3) 选择被淘汰的键值对并删除-freeMemoryIfNeeded
// file: src/evict.c
/* This function is periodically called to see if there is memory to free
* according to the current "maxmemory" settings. In case we are over the
* memory limit, the function will try to free some memory to return back
* under the limit.
*
* The function returns C_OK if we are under the memory limit or if we
* were over the limit, but the attempt to free memory was successful.
* Otherwise if we are over the memory limit, but not enough memory
* was freed to return back under the limit, the function returns C_ERR. */
int freeMemoryIfNeeded(void) {
int keys_freed = 0;
/* By default replicas should ignore maxmemory
* and just be masters exact copies. */
if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK;
size_t mem_reported, mem_tofree, mem_freed;
mstime_t latency, eviction_latency, lazyfree_latency;
long long delta;
int slaves = listLength(server.slaves);
int result = C_ERR;
/* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (clientsArePaused()) return C_OK;
if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
return C_OK;
mem_freed = 0;
latencyStartMonitor(latency);
if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
goto cant_free; /* We need to free memory, but policy forbids. */
while (mem_freed < mem_tofree) {
int j, k, i;
static unsigned int next_db = 0;
sds bestkey = NULL;
int bestdbid;
redisDb *db;
dict *dict;
dictEntry *de;
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
{
struct evictionPoolEntry *pool = EvictionPoolLRU;
while(bestkey == NULL) {
unsigned long total_keys = 0, keys;
/* We don't want to make local-db choices when expiring keys,
* so to start populate the eviction pool sampling keys from
* every DB. */
for (i = 0; i < server.dbnum; i++) {
db = server.db+i;
dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
db->dict : db->expires;
if ((keys = dictSize(dict)) != 0) {
evictionPoolPopulate(i, dict, db->dict, pool);
total_keys += keys;
}
}
if (!total_keys) break; /* No keys to evict. */
/* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {
if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid;
if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {
de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
}
/* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0;
/* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {
bestkey = dictGetKey(de);
break;
} else {
/* Ghost... Iterate again. */
}
}
}
}
/* volatile-random and allkeys-random policy */
else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
{
/* When evicting a random key, we try to evict a key for
* each DB, so we use the static 'next_db' variable to
* incrementally visit all DBs. */
for (i = 0; i < server.dbnum; i++) {
j = (++next_db) % server.dbnum;
db = server.db+j;
dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
db->dict : db->expires;
if (dictSize(dict) != 0) {
de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
bestdbid = j;
break;
}
}
}
/* Finally remove the selected key. */
if (bestkey) {
db = server.db+bestdbid;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
/* We compute the amount of memory freed by db*Delete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* Same for CSC invalidation messages generated by signalModifiedKey.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = (long long) zmalloc_used_memory();
latencyStartMonitor(eviction_latency);
if (server.lazyfree_lazy_eviction)
dbAsyncDelete(db,keyobj);
else
dbSyncDelete(db,keyobj);
latencyEndMonitor(eviction_latency);
latencyAddSampleIfNeeded("eviction-del",eviction_latency);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
signalModifiedKey(NULL,db,keyobj);
notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++;
/* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers();
/* Normally our stop condition is the ability to release
* a fixed, pre-computed amount of memory. However when we
* are deleting objects in another thread, it's better to
* check, from time to time, if we already reached our target
* memory, since the "mem_freed" amount is computed only
* across the dbAsyncDelete() call, while the thread can
* release the memory all the time. */
if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
/* Let's satisfy our stop condition. */
mem_freed = mem_tofree;
}
}
} else {
goto cant_free; /* nothing to free... */
}
}
result = C_OK;
cant_free:
/* We are here if we are not able to reclaim memory. There is only one
* last thing we can try: check if the lazyfree thread has jobs in queue
* and wait... */
if (result != C_OK) {
latencyStartMonitor(lazyfree_latency);
while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
result = C_OK;
break;
}
usleep(1000);
}
latencyEndMonitor(lazyfree_latency);
latencyAddSampleIfNeeded("eviction-lazyfree",lazyfree_latency);
}
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
return result;
}
(5) LFU源码解读
LFU 算法的启用,是通过设置 Redis 配置文件 redis.conf 中的 maxmemory 和 maxmemory-policy。
LFU 算法的实现可以分成三部分内容,分别是键值对访问频率记录、键值对访问频率初始化和更新,以及LFU算法淘汰数据。
(5.1) 键值对访问频率记录
每个键值对的值都对应了一个 redisObject 结构体,其中有一个 24 bits 的 lru 变量。
LRU 算法和 LFU 算法并不会同时使用。为了节省内存开销,Redis 源码就复用了 lru 变量来记录 LFU 算法所需的访问频率信息。
记录LFU算法的所需信息时,它会用24 bits中的低8 bits作为计数器,来记录键值对的访问次数,同时它会用24 bits中的高16 bits,记录访问的时间戳。
|<---访问时间戳--->|< 计数器 >|
16 bits 8 bits
+----------------+--------+
+ Last decr time | LOG_C |
+----------------+--------+
(5.2) 键值对访问频率初始化和更新
(5.2.1) 初始化
键值对 lru变量初始化是在 创建redisObject调用 createObject
函数时完成的。
主要分2步:
第一部是 lru 变量的高16位,是以1分钟为精度的 UNIX 时间戳。(LFUGetTimeInMinutes)
第二部是 lru 变量的低8位,被设置为宏定义 LFU_INIT_VAL,默认值为 5。
源码如下
// file: src/object.c
/*
* 创建一个redisObject对象
*
* @param type redisObject的类型
* @param *ptr 值的指针
*/
robj *createObject(int type, void *ptr) {
// 为redisObject结构体分配内存空间
robj *o = zmalloc(sizeof(*o));
// 省略部分代码
// 将lru字段设置为当前的 lruclock(分钟分辨率),或者 LFU 计数器。
// 判断内存过期策略
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
// 对应lfu
// LFU_INIT_VAL=5 对应二进制是 0101
// 或运算 高16位是时间,低8位是次数, LFU_INIT_VAL = 5
o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
} else {
// 对应lru
o->lru = LRU_CLOCK();
}
return o;
}
counter会被初始化为LFU_INIT_VAL
,默认5。
// file: src/evict.c
/* ----------------------------------------------------------------------------
* LFU (Least Frequently Used) implementation.
*
* 为了实现 LFU(最不常用)驱逐策略,我们在每个对象中总共有 24 位空间,因为我们为此目的重新使用了 LRU 字段。
*
* 我们将 24 位分成两个字段:
*
* 16 bits 8 bits
* +----------------+--------+
* + Last decr time | LOG_C |
* +----------------+--------+
*
* LOG_C 是提供访问频率指示的对数计数器。
* 然而,这个字段也必须递减,否则过去经常访问的键将永远保持这样的排名,而我们希望算法适应访问模式的变化。
*
* 因此,剩余的 16 位用于存储“递减时间”,
* 这是一个精度降低的 Unix 时间(我们将 16 位时间转换为分钟,因为我们不关心回绕),
* 其中 LOG_C 计数器减半 如果它具有高值,或者如果它具有低值则只是递减。
*
* 新key不会从零开始,以便能够在被淘汰之前收集一些访问,因此它们从 COUNTER_INIT_VAL 开始。
* COUNTER_INIT_VAL = 5
* 因此从5(或具有较小值)开始的键在访问时递增的可能性非常高。
*
* 在递减期间,如果对数计数器的当前值大于5的两倍,则对数计数器的值减半,否则它只减一。
*
* --------------------------------------------------------------------------*/
/*
* 以分钟为单位返回当前时间,只取最低有效16位。
* 返回的时间适合存储为 LFU 实现的 LDT(最后递减时间)。
*/
unsigned long LFUGetTimeInMinutes(void) {
// 65535 = 2^16 - 1 对应二进制是 1111 1111 1111 1111
// (server.unixtime/60) & 1111 1111 1111 1111
return (server.unixtime/60) & 65535;
}
(5.2.2) 更新LFU值
当一个键值对被访问时,Redis 会调用 lookupKey 函数进行查找。lookupKey 函数会调用 updateLFU 函数来更新键值对的访问频率。
// file: src/db.c
/*
* 访问对象时更新 LFU。
* 首先,如果达到递减时间,则递减计数器。
* 然后以对数方式递增计数器,并更新访问时间。
*/
void updateLFU(robj *val) {
// 获取计数器
unsigned long counter = LFUDecrAndReturn(val);
// 更新计数器
counter = LFULogIncr(counter);
val->lru = (LFUGetTimeInMinutes()<<8) | counter;
}
(5.2.2.1) 递减计数器-LFUDecrAndReturn
/*
* 如果达到对象递减时间,则 递减LFU计数器 但 不更新对象的LFU字段,
* 我们在真正访问对象时以显式方式更新访问时间和计数器。
*
* 并且我们将根据 经过的时间/server.lfu_decay_time 将计数器减半。
* 返回对象频率计数器。
* redis.conf配置文件里 lfu-decay-time 默认是 1
* And we will times halve the counter according to the times of
* elapsed time than server.lfu_decay_time.
*
* 此函数用于扫描数据集以获得最佳对象
* 适合:当我们检查候选对象时,如果需要,我们会递减扫描对象的计数器。
*/
unsigned long LFUDecrAndReturn(robj *o) {
// 高16位存的是 上次访问时间(分钟级的) Last decr time
unsigned long ldt = o->lru >> 8;
// 255 对应二进制 1111 1111
// o->lru & 1111 1111 相当于取低8位的值
// 获取计数器
unsigned long counter = o->lru & 255;
// 0 <= LFUTimeElapsed(ldt) < 65535
// 过了的分钟数 / server.lfu_decay_time
// num_periods 是过了 n轮 衰减时间(lfu_decay_time)
unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0;
// 如果经过的轮数不为0 (超过1分钟了)
if (num_periods)
// 如果 n轮衰减 > 访问次数,counter设置为0,相当于重新开始计算
// 否则,n轮衰减 <= 访问次数,counter设置为 counter - num_periods,相当于每过1轮衰减时间(lfu_decay_time),减1
counter = (num_periods > counter) ? 0 : counter - num_periods;
// 如果没有超过1分钟,num_periods=0,直接返回counter
// 如果超过1分钟,num_periods!=0,至少过了1轮衰减时间(lfu_decay_time)了,更新counter后返回
return counter;
}
LFUDecrAndReturn
得到的计数结果
- 如果在当前分钟时间戳内,counter不变
- 如果不在当前分钟时间戳内,每过1轮衰减时间(lfu_decay_time),counter减1 (代码里是过了num_periods轮,减num_periods)
/*
* 计算过了多少分钟
*
* 给定对象的上次访问时间,计算自上次访问以来经过的最小分钟数。
* 处理溢出(ldt 大于当前 16 位分钟时间),将时间视为正好回绕一次。
*
* @param ldt 上一次访问的时间(分钟级)
*/
unsigned long LFUTimeElapsed(unsigned long ldt) {
// 获取分钟级时间戳
unsigned long now = LFUGetTimeInMinutes();
// 计算过了多少分钟
if (now >= ldt) return now-ldt;
// 实际上now永远是在ldt(上一次访问时间之后)
// 但是现在 now < ldt,不符合预期
// ldt是 (server.unixtime/60) & 1111 1111 1111 1111 得到的,相当于取余,也就是至少过了1轮了
// 假设 ldt = 65534 now = 1,其实过了2分钟
return 65535-ldt+now;
}
(5.2.2.2) 更新LFU计数器-LFULogIncr
/*
* 以对数方式递增计数器。 当前计数器值越大,它真正实现的可能性就越小。 在255时饱和。
*
* Logarithmically increment a counter.
* The greater is the current counter value
* the less likely is that it gets really implemented.
* Saturate it at 255.
*/
uint8_t LFULogIncr(uint8_t counter) {
// 最大255
if (counter == 255) return 255;
// 获取一个随机数
double r = (double)rand()/RAND_MAX;
// 基础值 = counter - 5
double baseval = counter - LFU_INIT_VAL;
// 最小=0
if (baseval < 0) baseval = 0;
// 取对数
double p = 1.0/(baseval*server.lfu_log_factor+1);
// 随机数 < 对数时,计数器+1
if (r < p) counter++;
return counter;
}
counter并不是简单的访问一次就+1,而是采用了一个0-1之间的p因子控制增长。
取一个0-1之间的随机数r与p比较,当r < p
时,才增加counterp
取决于当前counter值与lfu_log_factor
因子,counter
值与lfu_log_factor
因子越大,p
越小,r<p
的概率也越小,counter增长的概率也就越小。
增长情况如下
+--------+------------+------------+------------+------------+------------+
| factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
+--------+------------+------------+------------+------------+------------+
| 0 | 104 | 255 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 1 | 18 | 49 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 10 | 10 | 18 | 142 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 100 | 8 | 11 | 49 | 143 | 255 |
+--------+------------+------------+------------+------------+------------+
(5.3) LFU算法淘汰数据
主要有三步
第一步,调用 getMaxmemoryState 函数计算待释放的内存空间;
第二步,调用 evictionPoolPopulate 函数随机采样键值对,并插入到待淘汰集合 EvictionPoolLRU 中;
第三步,遍历待淘汰集合 EvictionPoolLRU,选择实际被淘汰数据,并删除。
(5.3.1) 判断当前内存使用情况-getMaxmemoryState
// file: src/evict.c
/* Get the memory status from the point of view of the maxmemory directive:
* if the memory used is under the maxmemory setting then C_OK is returned.
* Otherwise, if we are over the memory limit, the function returns
* C_ERR.
*
* The function may return additional info via reference, only if the
* pointers to the respective arguments is not NULL. Certain fields are
* populated only when C_ERR is returned:
*
* 'total' total amount of bytes used.
* (Populated both for C_ERR and C_OK)
*
* 'logical' the amount of memory used minus the slaves/AOF buffers.
* (Populated when C_ERR is returned)
*
* 'tofree' the amount of memory that should be released
* in order to return back into the memory limits.
* (Populated when C_ERR is returned)
*
* 'level' this usually ranges from 0 to 1, and reports the amount of
* memory currently used. May be > 1 if we are over the memory
* limit.
* (Populated both for C_ERR and C_OK)
*/
int getMaxmemoryState(size_t *total, size_t *logical, size_t *tofree, float *level) {
size_t mem_reported, mem_used, mem_tofree;
/* Check if we are over the memory usage limit. If we are not, no need
* to subtract the slaves output buffers. We can just return ASAP. */
mem_reported = zmalloc_used_memory();
if (total) *total = mem_reported;
/* We may return ASAP if there is no need to compute the level. */
int return_ok_asap = !server.maxmemory || mem_reported <= server.maxmemory;
if (return_ok_asap && !level) return C_OK;
/* Remove the size of slaves output buffers and AOF buffer from the
* count of used memory. */
mem_used = mem_reported;
size_t overhead = freeMemoryGetNotCountedMemory();
mem_used = (mem_used > overhead) ? mem_used-overhead : 0;
/* Compute the ratio of memory usage. */
if (level) {
if (!server.maxmemory) {
*level = 0;
} else {
*level = (float)mem_used / (float)server.maxmemory;
}
}
if (return_ok_asap) return C_OK;
/* Check if we are still over the memory limit. */
if (mem_used <= server.maxmemory) return C_OK;
/* Compute how much memory we need to free. */
mem_tofree = mem_used - server.maxmemory;
if (logical) *logical = mem_used;
if (tofree) *tofree = mem_tofree;
return C_ERR;
}
(5.3.2) 更新待淘汰的候选键值对集合-evictionPoolPopulate
// file: src/evict.c
/* This is an helper function for freeMemoryIfNeeded(), it is used in order
* to populate the evictionPool with a few entries every time we want to
* expire a key. Keys with idle time smaller than one of the current
* keys are added. Keys are always added if there are free entries.
*
* We insert keys on place in ascending order, so keys with the smaller
* idle time are on the left, and keys with the higher idle time on the
* right. */
void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
int j, k, count;
dictEntry *samples[server.maxmemory_samples];
count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
for (j = 0; j < count; j++) {
unsigned long long idle;
sds key;
robj *o;
dictEntry *de;
de = samples[j];
key = dictGetKey(de);
/* If the dictionary we are sampling from is not the main
* dictionary (but the expires one) we need to lookup the key
* again in the key dictionary to obtain the value object. */
if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {
if (sampledict != keydict) de = dictFind(keydict, key);
o = dictGetVal(de);
}
/* Calculate the idle time according to the policy. This is called
* idle just because the code initially handled LRU, but is in fact
* just a score where an higher score means better candidate. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {
idle = estimateObjectIdleTime(o);
} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
/* When we use an LRU policy, we sort the keys by idle time
* so that we expire keys starting from greater idle time.
* However when the policy is an LFU one, we have a frequency
* estimation, and we want to evict keys with lower frequency
* first. So inside the pool we put objects using the inverted
* frequency subtracting the actual frequency to the maximum
* frequency of 255. */
idle = 255-LFUDecrAndReturn(o);
} else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
/* In this case the sooner the expire the better. */
idle = ULLONG_MAX - (long)dictGetVal(de);
} else {
serverPanic("Unknown eviction policy in evictionPoolPopulate()");
}
/* Insert the element inside the pool.
* First, find the first empty bucket or the first populated
* bucket that has an idle time smaller than our idle time. */
k = 0;
while (k < EVPOOL_SIZE &&
pool[k].key &&
pool[k].idle < idle) k++;
if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
/* Can't insert if the element is < the worst element we have
* and there are no empty buckets. */
continue;
} else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
/* Inserting into empty position. No setup needed before insert. */
} else {
/* Inserting in the middle. Now k points to the first element
* greater than the element to insert. */
if (pool[EVPOOL_SIZE-1].key == NULL) {
/* Free space on the right? Insert at k shifting
* all the elements from k to end to the right. */
/* Save SDS before overwriting. */
sds cached = pool[EVPOOL_SIZE-1].cached;
memmove(pool+k+1,pool+k,
sizeof(pool[0])*(EVPOOL_SIZE-k-1));
pool[k].cached = cached;
} else {
/* No free space on right? Insert at k-1 */
k--;
/* Shift all elements on the left of k (included) to the
* left, so we discard the element with smaller idle time. */
sds cached = pool[0].cached; /* Save SDS before overwriting. */
if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
memmove(pool,pool+1,sizeof(pool[0])*k);
pool[k].cached = cached;
}
}
/* Try to reuse the cached SDS string allocated in the pool entry,
* because allocating and deallocating this object is costly
* (according to the profiler, not my fantasy. Remember:
* premature optimization bla bla bla. */
int klen = sdslen(key);
if (klen > EVPOOL_CACHED_SDS_SIZE) {
pool[k].key = sdsdup(key);
} else {
memcpy(pool[k].cached,key,klen+1);
sdssetlen(pool[k].cached,klen);
pool[k].key = pool[k].cached;
}
pool[k].idle = idle;
pool[k].dbid = dbid;
}
}
(5.3.3) 选择被淘汰的键值对并删除-freeMemoryIfNeeded
// file: src/evict.c
/* This function is periodically called to see if there is memory to free
* according to the current "maxmemory" settings. In case we are over the
* memory limit, the function will try to free some memory to return back
* under the limit.
*
* The function returns C_OK if we are under the memory limit or if we
* were over the limit, but the attempt to free memory was successful.
* Otherwise if we are over the memory limit, but not enough memory
* was freed to return back under the limit, the function returns C_ERR. */
int freeMemoryIfNeeded(void) {
int keys_freed = 0;
/* By default replicas should ignore maxmemory
* and just be masters exact copies. */
if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK;
size_t mem_reported, mem_tofree, mem_freed;
mstime_t latency, eviction_latency, lazyfree_latency;
long long delta;
int slaves = listLength(server.slaves);
int result = C_ERR;
/* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (clientsArePaused()) return C_OK;
if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
return C_OK;
mem_freed = 0;
latencyStartMonitor(latency);
if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
goto cant_free; /* We need to free memory, but policy forbids. */
while (mem_freed < mem_tofree) {
int j, k, i;
static unsigned int next_db = 0;
sds bestkey = NULL;
int bestdbid;
redisDb *db;
dict *dict;
dictEntry *de;
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
{
struct evictionPoolEntry *pool = EvictionPoolLRU;
while(bestkey == NULL) {
unsigned long total_keys = 0, keys;
/* We don't want to make local-db choices when expiring keys,
* so to start populate the eviction pool sampling keys from
* every DB. */
for (i = 0; i < server.dbnum; i++) {
db = server.db+i;
dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
db->dict : db->expires;
if ((keys = dictSize(dict)) != 0) {
evictionPoolPopulate(i, dict, db->dict, pool);
total_keys += keys;
}
}
if (!total_keys) break; /* No keys to evict. */
/* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {
if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid;
if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {
de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
}
/* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0;
/* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {
bestkey = dictGetKey(de);
break;
} else {
/* Ghost... Iterate again. */
}
}
}
}
/* volatile-random and allkeys-random policy */
else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
{
/* When evicting a random key, we try to evict a key for
* each DB, so we use the static 'next_db' variable to
* incrementally visit all DBs. */
for (i = 0; i < server.dbnum; i++) {
j = (++next_db) % server.dbnum;
db = server.db+j;
dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
db->dict : db->expires;
if (dictSize(dict) != 0) {
de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
bestdbid = j;
break;
}
}
}
/* Finally remove the selected key. */
if (bestkey) {
db = server.db+bestdbid;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
/* We compute the amount of memory freed by db*Delete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* Same for CSC invalidation messages generated by signalModifiedKey.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = (long long) zmalloc_used_memory();
latencyStartMonitor(eviction_latency);
if (server.lazyfree_lazy_eviction)
dbAsyncDelete(db,keyobj);
else
dbSyncDelete(db,keyobj);
latencyEndMonitor(eviction_latency);
latencyAddSampleIfNeeded("eviction-del",eviction_latency);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
signalModifiedKey(NULL,db,keyobj);
notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++;
/* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers();
/* Normally our stop condition is the ability to release
* a fixed, pre-computed amount of memory. However when we
* are deleting objects in another thread, it's better to
* check, from time to time, if we already reached our target
* memory, since the "mem_freed" amount is computed only
* across the dbAsyncDelete() call, while the thread can
* release the memory all the time. */
if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
/* Let's satisfy our stop condition. */
mem_freed = mem_tofree;
}
}
} else {
goto cant_free; /* nothing to free... */
}
}
result = C_OK;
cant_free:
/* We are here if we are not able to reclaim memory. There is only one
* last thing we can try: check if the lazyfree thread has jobs in queue
* and wait... */
if (result != C_OK) {
latencyStartMonitor(lazyfree_latency);
while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
result = C_OK;
break;
}
usleep(1000);
}
latencyEndMonitor(lazyfree_latency);
latencyAddSampleIfNeeded("eviction-lazyfree",lazyfree_latency);
}
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
return result;
}
参考资料
[1] Redis 核心技术与实战 - 24 | 替换策略:缓存满了怎么办?
[2] Redis 核心技术与实战 - 27 | 缓存被污染了,该怎么办?
[3] Redis 源码剖析与实战 - 15 | 为什么LRU算法原理和代码实现不一样?
[4] Redis 源码剖析与实战 - 16 | LFU算法和其他算法相比有优势吗?
[5] Redis中的LFU算法